

TAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION: BACHELOR OF SCIENCE		
QUALIFICATION CODE: 07BOSC	LEVEL: 6	
COURSE NAME: PHYSICAL CHEMISTRY	COURSE CODE: PCH602S	
SESSION: JUNE 2023	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 100	

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER				
EXAMINER(S)	Prof Habauka M Kwaambwa			
MODERATOR:	Dr Euodia Hess			

INSTRUCTIONS				
1.	Answer ALL the questions in Sections A and B.			
2.	Write clearly and neatly.			
3.	Number the answers clearly.			

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENT

List of Useful Constants and Equation

THIS QUESTION PAPER CONSISTS OF 9 PAGES (Including this front page and a list of useful constants and equation as an attachment)

There are **20 questions** in this section. Answer ALL questions by selecting the letter of the correct answer. Each question carries **2** marks.

- 1. The heating of a gas at constant pressure is governed by
 - A. Boyle's law
 - B. Charles' law
 - C. Gay Lussac law
 - D. Avogadro's law
 - E. Ideal gas equation of state
- 2. An ideal gas is expanded to twice its original volume during an isothermal process. The final pressure of the gas
 - A. Increases to less than twice its original value
 - B. Decreases to twice its original value
 - C. Increases to more than twice its original value
 - D. Does not change
 - E. Decreases to one-half its original value
- 3. A sample of an ideal gas in a rigid closed container at a temperature of 50°C and 1.5 atm is heated to 100°C. What is the pressure of the gas at the higher temperature?
 - A. 3 atm
 - B. 3.5 atm
 - C. 1.7 atm
 - D. 4.6 atm
 - E. Insufficient information
- 4. What is the volume of 2 moles of a gas at STP?
 - A. 22.4 dm³
 - B. 48.8 dm³
 - C. 67.2 dm³
 - D. 44.8 dm³
 - E. Insufficient information
- 5. A closed system is one in which
 - A. Heat does not cross boundary of the system but mass may do so.
 - B. Both mass and energy cross the boundary of the system
 - C. Neither mass nor energy crosses the boundary of the system
 - D. Mass crosses the boundary but not the energy
 - E. Thermodynamic reactions do not occur
- 6. An intensive property of a system is one whose value
 - A. depends on the mass of the system like volume.
 - B. is not dependent on the path taken followed but on the state.
 - C. is dependent on the path followed and not on the state.
 - D. is always constant.
 - E. does not depend on the mass of the system, like temperature, pressure, etc.

- 7. If a gas is compressed against a constant pressure, keeping the temperature constant, then work done will be equal to:
 - A. Positive
 - B. Negative
 - C. Zero
 - D. Pressure x Volume
 - E. May be positive or negative depending on the temperature used
- 8. A mixture of gas expands from 0.06 m^3 to 0.09 m^3 at a constant pressure of 1 x 10^6 Pa and the change in internal energy is 54 kJ during the process. The heat absorbed by the mixture is
 - A. 30 kJ
 - B. 54 kJ
 - C. 84 kJ
 - D. 100 kJ
 - E. Insufficient information
- 9. The heat absorbed or given out by a reaction at constant pressure is known as:
 - A. Entropy change
 - B. Work
 - C. Enthalpy change
 - D. Internal energy change
 - E. None of the above
- 10. In a certain process, 900 J of work is done by the system which absorbs 550 J of heat. What is change in internal energy (ΔU) for the process?
 - A. 900 J
 - B. 250 J
 - C. 1450 J
 - D. 1459 J
 - E. 350 J
- 11. For iodine, I_2 , at 114°C, the standard enthalpy of fusion, ΔH_{fusion} , is 16.1 kJmol⁻¹ and the standard enthalpy of vaporization, ΔH_{vap} , is 45.0 kJmol⁻¹. Calculate the standard enthalpy of sublimation at this temperature.
 - A. 61.1 kJmol⁻¹
 - B. 16.1 kJmol⁻¹
 - C. 25.0 kJmol⁻¹
 - D. 28.9 kJmol⁻¹
 - E. Insufficient information
- 12. The conductivity for an acid HA solution of 0.0316 M concentration is 9.260 Ω^{-1} m⁻¹. Calculate the molar conductivity (in Ω^{-1} m²mol⁻¹) of the solution.
 - A. 2.93
 - B. 2.93 x 10²
 - C. 0.293
 - D. 2.93 x 10⁻²
 - E. None of the above

- 13. The degree of dissociation of an acid HX in aqueous solution of concentration 0.025 3 moldm⁻³ is 0.028. What is the 3 for the acid?
 - A. 7.2 x 10⁻⁴
 - B. 2.0 x 10⁻⁵
 - C. 8.1 x 10⁻⁴
 - D. 1.8 x 10⁻⁵
 - E. 2.0×10^{-4}
- 14. The molar conductivities of Cs⁺ and SO $_4^{2-}$ are 0.772 x 10⁻² and 1.600 x 10⁻² Sm²mol⁻¹, respectively. What is the molar conductivity of Cs₂SO₄?
 - A. 3.972 x 10⁻² Sm²mol⁻¹
 - B. 3.144 x 10⁻² Sm²mol⁻¹
 - C. 0.828 x 10⁻² Sm²mol⁻¹
 - D. 2.372 x 10⁻² Sm²mol⁻¹
 - E. Insufficient information
- 15. The molar conductivity of Mg(NO₃)₂ is $2.488 \times 10^{-2} \text{ Sm}^2 \text{mol}^{-1}$. If the molar conductivity of Mg²⁺ is $1.060 \times 10^{-2} \text{ Sm}^2 \text{mol}^{-1}$, what is the molar conductivity of NO₃⁻?
 - A. 0.368 x 10⁻² Sm²mol⁻¹
 - B. 1.428 x 10⁻² Sm²mol⁻¹
 - C. 0.714 x 10⁻² Sm²mol⁻¹
 - D. 0.184 x 10⁻² Sm²mol⁻¹
 - E. Insufficient information
- 16. The molar conductivities at infinite dilution, Λ_o , for HCl(aq), NaB(aq) (sodium benzoate) and NaCl (aq) are 426.2, 82.4 and 126.5 Scm²mol⁻¹, respectively, at 25°C. What is Λ_o for HB (benzoic acid) in Sm²mol⁻¹?
 - A. 0.382
 - B. 3.82×10^2
 - C. 3.82
 - D. 3.82 x 10⁻²
 - E. None of the above
- 17. What are the units of k for the rate law, Rate = $k \frac{[A]^2}{[B]}$, when the concentration and

time units are mol/L and seconds, respectively?

- A. s⁻¹
- B. L mol⁻¹ s⁻¹
- C. L2 mol-2 s-1
- D. L² s² mol⁻²
- E. L-2 s-2 mol-2

18. A reaction A \rightarrow P displays first-order kinetics. It therefore follows that a plot of

versus time is linear, and that the slope of this plot = .

- A. [A]; -k
- B. [A]; k
- C. 1/[A]; -k
- D. 1/[A]; k
- E. In[A]; -k
- 19. The activation energy of a reaction can be determined from the slope of which of the following graphs?
 - A. In k vs T
 - B. $\frac{\ln k}{T}$ vs $\frac{1}{T}$
 - C. $\ln k \text{ vs } \frac{1}{T}$
 - D. $\frac{T}{\ln k}$ vs $\frac{1}{T}$
 - E. $\frac{\ln k}{T}$ vs $\frac{1}{T}$
- 20. The ozone, O₃, of the stratosphere can be decomposed by the reaction with nitrogen oxide (commonly called nitric oxide), NO, from high-flying jet aircraft.

$$O_3(g) + NO(g) \rightarrow NO_2(g) + O_2(g)$$

The rate expression is rate = $k[O_3][NO]$. Which of the following mechanisms agree with observed rate expression?

- Mechanism 1
- $NO + O_3 \rightarrow NO_3 + O$ $NO_3 + O \rightarrow NO_2 + O_2$
- slow fast

- Mechanism 2
- $NO + O_3 \rightarrow NO_2 + O_2$
- one slow step

- Mechanism 3
- $O_3 \rightarrow O_2 + O$ $NO + O \rightarrow NO_2$
- slow

- Mechanism 4
- fast

- $NO \rightarrow N + O$ $O_3 + O \rightarrow 2O_2$

 $O_2 + N \rightarrow NO_2$

slow fast fast

- A. 1 only B. 1 and 2
- C. 2, 3 and 4
- D. 2 only
- E. All the 4 mechanisms

SECTION B [60]

There are FOUR questions in this section. Answer all Questions.

QUESTION 1 [12]

- (a) State whether q, w, ΔU , ΔH and ΔS are positive, negative or zero for reversible adiabatic compression of an ideal gas. (5)
- (b) Predict whether the entropy change, ΔS , is greater than zero, less than zero or zero for each of the following processes: (7)
 - (i) Dissolving a solute in a solvent to produce a solution
 - (ii) An ideal gas undergoing a Carnot cycle
 - (iii) $Cl(g) \rightarrow Cl^{-}(g)$
 - (iv) Water frozen at 0°C and 1 atm
 - (v) $CH_3CH_2CH_3(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(I)$
 - (vi) $H_2(g, 300 \text{ K}, 1 \text{ atm}) \rightarrow H_2(g, 100 \text{ K}, 1 \text{ atm})$
 - (vii) $Cl_2(g) + H_2(g) \rightarrow 2HCl(g)$

QUESTION 2 [12]

Using the First Law of Thermodynamics, calculate the quantity listed in **bold**, in joules, for the system of one mole of gas in a cylinder with movable cylinder piston.

[Given: $C_v = 12.5 \text{ JK}^{-1}\text{mol}^{-1}$; $C_p = 20.8 \text{ JK}^{-1}\text{mol}^{-1}$]

- (a) The gas absorbs 234 J of heat and is compressed by 534 J of work. $\Delta U = ?$
- (b) The gas is cooled by removing 106 J of heat and expands doing 242 J of work. $\Delta U = ?$
- (c) The gas is heated at constant pressure from 298 K to 398 K. q = ?
- (d) The gas is heated at constant volume from 298 K to 398 K? $\Delta U = ?$
- (e) The gas expands from 0.250 L to 1.00 L against an external pressure of 2.50 atm. w = ?
- (f) The change internal energy (ΔU) for a constant pressure process was 407 J and the change in enthalpy was 687 J. \mathbf{w} = ?

QUESTION 3 [14]

(a) Define the terms conductance, L, and resistivity, ρ, as used in Electrochemistry and state the SI units.(4)

- (b) A conductivity cell was calibrated using 0.01M KCl (κ =1.4087 x 10⁻³ Scm⁻¹) in the cell, and the measured resistance was 688 Ω .
 - (i) Find the cell constant. (3)
 - (ii) A 0.010 M AgNO₃ solution in the same cell had a resistance of 777 Ω . What is the conductivity, κ , for the AgNO₃ solution? (3)
- (c) Given the standard reduction potentials 0.403 V and 0.337 V at 298 K for the half cells Cd²⁺ Cd(s) and Cu²⁺ Cu(s), respectively. Deduce the overall reaction that will be spontaneous and write down the complete cell notation for this overall reaction. (4)

QUESTION 4 [22]

(a) What is the overall order of the reaction described by each of the rate expressions below? State the units of the rate coefficient, k, if the rate is in moldm⁻³s⁻¹.

(i) Rate =
$$k[A]^2[B]$$
 (ii) Rate = $k[A]^{1.5}[B]^{0.5}$ (4)

(b) Consider a reaction A \xrightarrow{k} P. The integrated rate law for the reaction is:

$$[A] - [A]_o = -kt$$

- (i) State the two reaction requirements needed in order to derive the equation above. (2)
- (ii) What is the order of the reaction? What are the units of the rate constant if the rate is in mol L⁻¹ min⁻¹? (2)
- (iii) What plot would you construct to determine the rate constant, k, for the reaction? Label the axes on diagram and sketch the graph that you would expect.(3)
- (iv) Derive the half-life expression for this reaction. (3)

(c) The table below gives experimental data for the half-lives, $t_{0.5}$, of different reactions as a function of the initial reactant concentration, C_o . Determine the order of each of the two reactions. (4)

	t _{0.5} / seconds		
Co / moldm ⁻³	Reaction 1	Reaction 2	
0.02	30	60	
0.04	30	120	

(d) The following questions refer to the popular demonstration called "Elephants Toothpaste" in which the mechanism is believed to be:

Step 1:
$$H_2O_2 + I^- \rightarrow H_2O + OI^-$$
 slow
Step 2: $H_2O_2 + OI^- \rightarrow H_2O + O_2 + I^-$ fast

(iii) Devise the overall chemical equation consistent with the mechanism provided.

(1)

END OF EXAM QUESTIONS

LIST OF USEFUL EQUATION AND CONSTANTS

Van der Waals eqⁿ.
$$P = \frac{nRT}{V - nb} - \frac{n^2 a}{V^2} = \frac{RT}{\overline{V} - b} - \frac{a}{\overline{V}^2}$$

Universal Gas constant $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

Boltzmann's constant, $k = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Planck's constant $h = 6.626 \times 10^{-34} \text{ J s}$

Debye-Hückel's constant, A = $0.509 \text{ (mol dm}^{-3})^{1/2} \text{ or mol}^{-0.5} \text{kg}^{0.5}$

Faraday's constant $F = 96485 \text{ C mol}^{-1}$

Mass of electron $m_e = 9.109 \times 10^{-31} \text{ kg}$

Velocity of light $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Avogadro's constant $N_A = 6.022 \times 10^{23}$

1 electron volt (eV) = $1.602 \times 10^{-19} \text{ J}$